6,007 research outputs found

    Kosmotropes and chaotropes: modelling preferential exclusion, binding and aggregate stability

    Get PDF
    Kosmotropic cosolvents added to an aqueous solution promote the aggregation of hydrophobic solute particles, while chaotropic cosolvents act to destabilise such aggregates. We discuss the mechanism for these phenomena within an adapted version of the two-state Muller-Lee-Graziano model for water, which provides a complete description of the ternary water/cosolvent/solute system for small solute particles. This model contains the dominant effect of a kosmotropic substance, which is to enhance the formation of water structure. The consequent preferential exclusion both of cosolvent molecules from the solvation shell of hydrophobic particles and of these particles from the solution leads to a stabilisation of aggregates. By contrast, chaotropic substances disrupt the formation of water structure, are themselves preferentially excluded from the solution, and thereby contribute to solvation of hydrophobic particles. We use Monte Carlo simulations to demonstrate at the molecular level the preferential exclusion or binding of cosolvent molecules in the solvation shell of hydrophobic particles, and the consequent enhancement or suppression of aggregate formation. We illustrate the influence of structure-changing cosolvents on effective hydrophobic interactions by modelling qualitatively the kosmotropic effect of sodium chloride and the chaotropic effect of urea.Comment: 13 pages, 12 figures; inclusion of review material, parameter analysis and comparison of kosmotropic and chaotropic effect

    Short-term growth and biomechanical responses of the temperate seagrass Cymodocea nodosa to CO2 enrichment

    Get PDF
    Seagrasses are often regarded as climate change 'winners' because they exhibit higher rates of photosynthesis, carbon fixation and growth when exposed to increasing levels of ocean acidification. However, questions remain whether such growth enhancement compromises the biomechanical properties of the plants, altering their vulnerability to structural damage and leaf loss. Here, we investigated the short-term (6 wk) effects of decreasing pH by CO2 enrichment on the growth, morphology and leaf-breaking force of the temperate seagrass Cymodocea nodosa. We found that the plant biomass balance under levels of acidification representative of short-term climate change projections (pH 8.04) was positive and led to an increase in leaf abundance in the shoots. However, we also found that plant biomass balance was negative under levels of acidification experienced presently (pH 8.29) and those projected over the long-term (pH 7.82). Leaf morphology (mean leaf length, thickness and width) was invariant across our imposed acidification gradient, although leaves were slightly stronger under [CO2] representative of short-term climate change. Taken together, these findings indicate that a subtle increase in growth and mechanical resistance of C. nodosa is likely to occur following short-to medium-term changes in ocean chemistry, but that these positive effects are unlikely to be maintained over the longer term. Our study emphasises the need to account for the interdependencies between environmental conditions and variations in multiple aspects of the structure and functioning of seagrass communities when considering the likely consequences of climate change.Mobility Fellowships Programme of the EuroMarine Consortium (European Commission Seventh Framework Programme) [FP7-ENV-2010.2.2.1-3]; Foundation of Science and Technology of Portugal [SFRH/BPD/119344/2016, PTDC/MAR-EST/3223/2014]; Natural Environment Research Council (NERC) through the UK Ocean Acidification Research Programme (UKOARP) [NE/H017445/1]info:eu-repo/semantics/publishedVersio

    The role of the Berry Phase in Dynamical Jahn-Teller Systems

    Full text link
    The presence/absence of a Berry phase depends on the topology of the manifold of dynamical Jahn-Teller potential minima. We describe in detail the relation between these topological properties and the way the lowest two adiabatic potential surfaces get locally degenerate. We illustrate our arguments through spherical generalizations of the linear T x h and H x h cases, relevant for the physics of fullerene ions. Our analysis allows us to classify all the spherical Jahn-Teller systems with respect to the Berry phase. Its absence can, but does not necessarily, lead to a nondegenerate ground state.Comment: revtex 7 pages, 2 eps figures include

    Snapshot of macroalgae and fish assemblages in temperate reefs in the Southern European Atlantic Ecoregion

    Get PDF
    Most of the biodiversity studies in the South European Atlantic Shelf ecoregion are limited to shallow subtidal or intertidal habitats, while deeper reef habitats, also of relevant ecological importance, are particularly understudied. Macroalgal communities, associated fauna, and sea surface temperature were studied in deep reefs (25-30 m) at two locations in this ecoregion: Parcel, North of Portugal (41 degrees N), and Tarifa, Southern Spain (35 degrees N). Specifically, algal assemblages were assessed using biomass collection and associated ichthyofauna was assessed using visual census techniques using scuba. Seawater surface temperature was higher (>3 degrees C) in the southern region-Tarifa, compared to the northern region-Parcel. Our survey revealed 18 fish species and 23 algae species. The highest abundance of cold-water species (both macroalgae and fish species) was recorded in Parcel and warm-water species were dominant in Tarifa. In light of climate global trends, both regions might experience biodiversity shifts towards tropicalization. Current knowledge on their biodiversity is imperative to further evaluate potential shifts.info:eu-repo/semantics/publishedVersio

    Statistical Analysis of Genealogical Trees for Polygamic Species

    Full text link
    Repetitions within a given genealogical tree provides some information about the degree of consanguineity of a population. They can be analyzed with techniques usually employed in statistical physics when dealing with fixed point transformations. In particular we show that the tree features strongly depend on the fractions of males and females in the population, and also on the offspring probability distribution. We check different possibilities, some of them relevant to human groups, and compare them with simulations.Comment: 2 eps figs, Fig.2 changed to meet cond-mat size criteri

    Interfaces and the edge percolation map of random directed networks

    Full text link
    The traditional node percolation map of directed networks is reanalyzed in terms of edges. In the percolated phase, edges can mainly organize into five distinct giant connected components, interfaces bridging the communication of nodes in the strongly connected component and those in the in- and out-components. Formal equations for the relative sizes in number of edges of these giant structures are derived for arbitrary joint degree distributions in the presence of local and two-point correlations. The uncorrelated null model is fully solved analytically and compared against simulations, finding an excellent agreement between the theoretical predictions and the edge percolation map of synthetically generated networks with exponential or scale-free in-degree distribution and exponential out-degree distribution. Interfaces, and their internal organization giving place from "hairy ball" percolation landscapes to bottleneck straits, could bring new light to the discussion of how structure is interwoven with functionality, in particular in flow networks.Comment: 20 pages, 4 figure
    • 

    corecore